A Review on Trends and Effectiveness of Rainfall Prediction Models for Smart Irrigation: Toward Future Development
DOI:
https://doi.org/10.57255/intellect.v4i1.1364Keywords:
Rainfall Prediction, ARIMA, Precision Irrigation, Smart AgricultureAbstract
Rainfall prediction is critical for enabling precision irrigation, particularly in tropical agricultural regions vulnerable to climate variability. This review systematically examines 15 peer-reviewed articles published between 2019 and 2024, using the PRISMA framework to evaluate the performance and applicability of rainfall prediction models for precision agriculture. The models are categorized into statistical (e.g., ARIMA), artificial intelligence (e.g., ANN, LSTM, ELM), and hybrid approaches (e.g., Neural Prophet–LSTM, ANFIS). Quantitative synthesis based on RMSE, MAE, MAPE, and R² reveals that hybrid models generally yield the highest predictive accuracy (e.g., RMSE = 0.0633; R² = 0.98), while AI models perform well on daily, nonlinear datasets but require extensive computational resources and expertise. In contrast, ARIMA remains the most practical and reliable option for monthly forecasting in data-scarce environments, offering a balance between accuracy and operational feasibility (e.g., RMSE = 69.506; MAPE = 31.41%). Contextual factors such as data availability, digital infrastructure, and user capacity significantly influence model suitability. The review also highlights real-world implementations and practical challenges—such as sensor limitations and technical skill gaps—associated with deploying advanced models. Ultimately, this review provides a comparative perspective to guide model selection based on statistical performance and implementation readiness. It further supports national food security goals by aligning predictive modeling with the operational needs of climate-resilient agriculture in supporting climate-resilient agriculture in tropical regions.
Abstrak
Prediksi curah hujan merupakan komponen penting dalam mendukung irigasi presisi, terutama di wilayah pertanian tropis yang rentan terhadap variabilitas iklim. Kajian ini secara sistematis menelaah 15 artikel ilmiah terbitan tahun 2019 hingga 2024 dengan menggunakan kerangka PRISMA, untuk mengevaluasi kinerja dan relevansi model prediksi curah hujan dalam konteks pertanian presisi. Model yang dianalisis mencakup pendekatan statistik (misalnya ARIMA), kecerdasan buatan (seperti ANN, LSTM, ELM), serta model hibrida (seperti Neural Prophet–LSTM dan ANFIS). Sintesis kuantitatif berdasarkan indikator RMSE, MAE, MAPE, dan R² menunjukkan bahwa model hibrida umumnya memberikan akurasi prediksi tertinggi (misalnya RMSE = 0,0633; R² = 0,98), sementara model AI efektif untuk data harian yang kompleks namun membutuhkan sumber daya komputasi dan keahlian teknis yang tinggi. Di sisi lain, ARIMA tetap menjadi pilihan paling praktis untuk peramalan bulanan di wilayah dengan keterbatasan data dan infrastruktur, karena mampu menyeimbangkan akurasi dan kemudahan operasional (misalnya RMSE = 69,506; MAPE = 31,41%). Faktor kontekstual seperti ketersediaan data, kesiapan infrastruktur digital, dan kapasitas pengguna sangat memengaruhi kesesuaian model. Kajian ini juga mengidentifikasi tantangan implementasi nyata, termasuk keterbatasan sensor dan rendahnya literasi teknologi. Secara keseluruhan, ulasan ini memberikan panduan komparatif dalam memilih model berdasarkan performa statistik dan kesiapan penerapan, serta mendukung upaya ketahanan pangan nasional melalui pemodelan prediksi yang kontekstual dan adaptif terhadap iklim.
Downloads
References
Badan Pusat Statistik Indonesia, “Hasil Pencacahan Lengkap Sensus Pertanian 2023,” Sensus Pertan., p. 28, 2023.
J. Indarto, “RPJPN 2025-2045 dan RPJMN 2025-2029 Lingkup Pangan dan Pertanian,” 2024.
Kementerian Perencanaan Pembangunan Nasional / Bappenas, “Lampiran Rancangan Undang-Undang tentang RPJPN 2025–2045,” 2023.
R. Juniadi Domitri Simamora, “Peramalan Curah Hujan Menggunakan Metode Extreme Learning Machine,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
D. Aborass, H. A. Hassan, I. Sahalash, and H. Al-Rimmawi, “Application of ARIMA Models in Forecasting Average Monthly Rainfall in Birzeit, Palestine,” Int. J. Water Resour. Arid Environ., vol. 11, no. 1, pp. 62–80, 2022.
S. Violino et al., “A data-driven bibliometric review on precision irrigation,” Smart Agric. Technol., vol. 5, no. May, p. 100320, 2023, doi: 10.1016/j.atech.2023.100320.
M. Jenkins and D. E. Block, “A Review of Methods for Data-Driven Irrigation in Modern Agricultural Systems,” Agronomy, vol. 14, no. 7, pp. 1–28, 2024, doi: 10.3390/agronomy14071355.
I. A. Lakhiar et al., “A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints,” Agric., vol. 14, no. 7, 2024, doi: 10.3390/agriculture14071141.
S. A. Souza, L. N. Rodrigues, and F. F. da Cunha, “Assessing the precision irrigation potential for increasing crop yield and water savings through simulation,” Precis. Agric., vol. 24, no. 2, pp. 533–559, 2023, doi: 10.1007/s11119-022-09958-4.
C. Saravanan, S. Sarathi, and P. Sriram, “Intelligent Water Management System Utilizing AI for Precision Agriculture,” 2024 Int. Conf. Syst. Comput. Autom. Netw., pp. 1–5, doi: 10.1109/ICSCAN62807.2024.10894485.
A. Jamal et al., “Real‐Time Irrigation Scheduling Based on Weather Forecasts Field Observations and Human-Machine Interactions,” Water Resour. Res., vol. 59, no. 12, 2023, doi: https://doi.org/10.1029/2023WR035810.
M. Musfiroh, D. C. R. Novitasari, P. K. Intan, and G. G. Wisnawa, “Penerapan Metode Principal Component Analysis (PCA) dan Long Short-Term Memory (LSTM) dalam Memprediksi Prediksi Curah Hujan Harian,” Build. Informatics, Technol. Sci., vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3114.
H. Y. Tee and R. Mansor, “FORECASTING RAINFALL VOLUME IN SELANGOR WITH A COMBINED ARIMA MODEL,” J. Comput. Innov. Anal., vol. 3, no. 1, pp. 83–103, Jan. 2024, doi: 10.32890/jcia2024.3.1.5.
Y. Ardi, S. Effendi, and E. B. Nababan, “Mamdani and Sugeno Fuzzy Performance Analysis on Rainfall Prediction,” Randwick Int. Soc. Sci. J., vol. 2, no. 2, pp. 176–192, Apr. 2021, doi: 10.47175/rissj.v2i2.240.
S. Paparrizos, E. M. N. A. N. Attoh, S. J. Sutanto, N. Snoeren, and F. Ludwig, “Local rainfall forecast knowledge across the globe used for agricultural decision-making,” Sci. Total Environ., vol. 899, no. July, p. 165539, 2023, doi: 10.1016/j.scitotenv.2023.165539.
M. K. Saggi and S. Jain, “A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning approaches,” Arch. Comput. Methods Eng., vol. 29, no. 6, pp. 4455–4478, 2022, doi: 10.1007/s11831-022-09746-3.
F. A. F. Sham, A. El-Shafie, W. Z. W. Jaafar, A. S, M. Sherif, and A. N. Ahmed, “Advances in AI-based rainfall forecasting: a comprehensive review of past, present, and future directions with intelligent data fusion and climate change models,” Results Eng., vol. 27, no. June, p. 105774, 2025, doi: 10.1016/j.rineng.2025.105774.
M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, 2021, doi: 10.1136/bmj.n71.
A. S. Ahmar and A. Mokhtar, “Evaluating ARIMA Models for Short-Term Rainfall Forecasting in Polewali Mandar Regency,” JINAV J. Inf. Vis., vol. 5, no. 2, pp. 250–264, Dec. 2024, doi: 10.35877/454RI.jinav3266.
S. Bora and A. Hazarika, “Rainfall time series forecasting using ARIMA model,” in 2023 International Conference on Artificial Intelligence and Applications, ICAIA 2023 and Alliance Technology Conference, ATCON-1 2023 - Proceeding, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/ICAIA57370.2023.10169493.
M. J. Alam and A. Majumder, “A Comparative Analysis of ARIMA and other Statistical Techniques in Rainfall Forecasting: A Case Study in Kolkata (KMC), West Bengal,” Curr. World Environ., vol. 18, no. 3, pp. 1384–1398, Jan. 2024, doi: 10.12944/cwe.18.3.37.
N. Thakur, S. Karmakar, and S. Soni, “Rainfall Forecasting Using Various Artificial Neural Network Techniques - A Review,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., pp. 506–526, Jun. 2021, doi: 10.32628/cseit2173159.
Q. Zou, Y. Liu, and X. Linge, “A survey on rainfall forecasting using artificial neural network’,” 2019.
G. L. V. Prasad, B. R. Teja, T. Haribabu, G. N. Pavani, D. Karunamma, and K. Vivek, “A Hybrid Time Series Rainfall Prediction Model Using Neural Prophet and LS TM,” Int. Conf. Self Sustain. Artif. Intell. Syst. ICSSAS 2023 - Proc., no. Icssas, pp. 1582–1587, 2023, doi: 10.1109/ICSSAS57918.2023.10331827.
B. T. Pham, K. T. T. Bui, I. Prakash, and H. B. Ly, “Hybrid artificial intelligence models based on adaptive neuro fuzzy inference system and metaheuristic optimization algorithms for prediction of daily rainfall,” Phys. Chem. Earth, vol. 134, no. January, p. 103563, 2024, doi: 10.1016/j.pce.2024.103563.
A. Y. Barrera-Animas, L. O. Oyedele, M. Bilal, T. D. Akinosho, J. M. D. Delgado, and L. A. Akanbi, “Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting,” Mach. Learn. with Appl., vol. 7, no. November 2021, p. 100204, 2022, doi: 10.1016/j.mlwa.2021.100204.
A. de Sousa Araújo, A. R. Silva, and L. E. Zárate, “Extreme precipitation prediction based on neural network model – A case study for southeastern Brazil,” J. Hydrol., vol. 606, no. September 2021, 2022, doi: 10.1016/j.jhydrol.2022.127454.
A. I. Pathan et al., “Comparative assessment of rainfall-based water level prediction using machine learning (ML) techniques,” Ain Shams Eng. J., vol. 15, no. 7, 2024, doi: 10.1016/j.asej.2024.102854.
FAO, IFAD, UNICEF, WFP, and WHO, The State of Food Security and Nutrition in the World 2021 : Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All. Rome: FAO, 2021. doi: 10.4060/cb4474en.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Olivia Wardhani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.